

Orthotropic Elements for an Idealized Representation of Complex Structures in Ship Global Strength Analysis

Supervisor:	DrIng. Thomas Lindemann, University of Rostock
Internship tutor:	DiplIng. Stefan Griesch, MV WERFTEN GmbH
Reviewer:	Prof. Hervé Le Sourne, ICAM, France

Min Htin Kyaw

Hamburg, February 2019

Motivation

- Pipes, HVAC, Production, etc.
- FEA, the de facto standard for structural strength analysis of ships
- Needs to be performed quickly due to the interdisciplinary nature
- Idealize the structural components in FEM \checkmark fast

✓ efficient

Idealization of Structural Components

Idealization of Stiffened Panels

- Conventional Modelling Approach
 - Plates Shell Elements
 - Stiffeners Girders

 \geq

- Beam Elements
- Shell Elements, etc.
- Requires mesh boundaries at the stiffener locations
- Mesh coarseness limited by the stiffener spacing

- Side balcony openings also require modelling efforts
- Beneficial to represent them as intact plates with equivalent strength

Idealization of Stiffened Panels

Idealization of Stiffened Panels – Approach 1

Orthotropic (One Layer) Approach

- Approach suggested by O. F. Hughes (1983)
- To smear the stiffeners into the base plating
- Stiffeners removed, Plate strength increased in stiffener direction

- Cross-section 'Area' only considered in idealization
- ONLY membrane strength is retained in idealized plate,
- NOT actual bending strength of the stiffened panel is retained.

Idealization of Stiffened Panels – Approach 2

Laminate Approach

- Approach introduced by J. Romanoff et al (2013)
- To represent the stiffened panel with laminate shell of equivalent strength

 Both <u>Membrane</u> and <u>Bending</u> strengths maintained in idealized laminate shell

Idealization of Side Openings

Unidealized Model with Actual Openings

Idealized Side Openings

Idealization of Side Openings – Approach 1

Reduced Plate Thickness Approach

DNV-GL FEA Class Guideline

Larger areas with cut outs, e.g. wash bulkheads, and walls with doors and windows:

$$t_{red} = \frac{1}{1 + 0.0025p^2} t_0$$

$$p = \text{cut-out area in \%}$$

Ref: DNVGL-CG-0127

р

8

Idealization of Side Openings – Approach 2

Equivalent Orthotropic Plate Approach

- Introduced by Heder and Ulfvarson (1991)
- Unique piece of openings analyzed with FEA under various load cases
- Deformation solutions from openings' FEA determine of opening panel

Ref: Heder et. al, Hull Beam Behaviour of Passenger Ships

Catalogue of Equivalent Orthotropic Properties

- Equivalent Orthotropic Plate Approach requires beforehand 2D FE analyses of Opening Panels
- Beneficial to have a catalogue of equivalent orthotropic properties for various types of openings
- How to characterize the openings?

- Opening (%) in Horizontal and Vertical Directions
- > Nomination : OHOV 6060 for the example shown
- > Opening types 1010, 1020, 1030,....., 9090.

Summary

\star Idealization of Stiffened Panels

- Orthotropic (One Layer) Vs Laminate approach
- Laminate approach correct bending stiffness secondary response
- Laminate approach modal analysis
- Calculation of idealization parameters necessary
- Tool necessary for faster idealization

Idealization of Side Openings

- Reduced Plate Thickness Vs Equivalent Orthotropic Plate Approach
- Equivalent Orthotropic Plate Approach more reliable
- Beforehand FEAs of prospective opening panels necessary
- Catalogue of equivalent orthotropic properties easier idealization process

Implementation of Idealization

Tool for idealization of stiffened panel (laminate approach)

	=Information of the Panel (User Input)																						
	=Equivalent Stiffener for Bulb Profiles (les (Calculation	1)																	
	=Idealization Parameters (For FEM Input)																						
													Material Properties				Sectional Properties						
N	٧o.	Panel Data									Equivalent Stiffener				Mat Numb	EX	GXZ	ρ	Sec Numbe	Sec Offset	DQX	DQY	
	В	ase Plate	Spacing (mm)	600	tkn (mm)	7	Angle (/	A)/ Bulb (B)	В	Eplate	206000	bp (mm)	600	tp (mm)	7		206000	79230.77	7.85			I	
1	ιΓ	Angle	tw (mm)		hw (mm)		Bulb	b (mm)	140	Eweb	206000	tw (mm)	8	hw (mm)	126.7826	1	2746.667	1056.41	0.104667	1	49.08191	569802.7	462179.5
		Section	bf (mm)		tf (mm)		Profile	t (mm)	8	Eflg	206000	bf (mm)	26.89552	tf (mm)	13.21739		9234.129	3551.588	0.351883				
	В	ase Plate	Spacing (mm)	600	tkn (mm)	8	Angle (/	A)/ Bulb (B)	В	Eplate	206000	bp (mm)	600	tp (mm)	8		206000	79230.77	7.85				
2	2 [Angle	tw (mm)		hw (mm)		Bulb	b (mm)	140	Eweb	206000	tw (mm)	8	hw (mm)	126.7826	1	2746.667	1056.41	0.104667	2	51.00516	626569.3	528205.1
		Section	bf (mm)		tf (mm)		Profile	t (mm)	8	Eflg	206000	bf (mm)	26.89552	tf (mm)	13.21739		9234.129	3551.588	0.351883				
	В	ase Plate	Spacing (mm)	550	tkn (mm)	6	Angle (/	A)/ Bulb (B)	В	Eplate	206000	bp (mm)	550	tp (mm)	6		206000	79230.77	7.85				
3	3	Angle	tw (mm)		hw (mm)		Bulb	b (mm)	100	Eweb	206000	tw (mm)	8	hw (mm)	91.13043	2	2996.364	1152.448	0.114182	3	36.38587	468021.5	396153.8
		Section	bf (mm)		tf (mm)		Profile	t (mm)	8	Eflg	206000	bf (mm)	25.80796	tf (mm)	8.869565		9666.254	3717.79	0.36835				
	В	ase Plate	Spacing (mm)	600	tkn (mm)	10	Angle (/	A)/ Bulb (B)	А	Eplate	206000	bp (mm)	600	tp (mm)	10		206000	79230.77	7.85			I	
4	1	Angle	tw (mm)	8	hw (mm)	80	Bulb	b (mm)		Eweb	206000	tw (mm)	8	hw (mm)	80	3	2746.667	1056.41	0.104667	4	28.39796	879817.2	660256.4
		Section	bf (mm)	100	tf (mm)	12	Profile	t (mm)		Eflg	206000	bf (mm)	100	tf (mm)	12		34333.33	13205.13	1.308333				

+ Catalogue for idealized orthotropic properties of side openings

No.	Item	EX (MPa)	EY (MPa)	EXY (MPa)	vxy		No.	Item	EX (MPa)	EY (MPa)	EXY (MPa)	vxy
1	9090	20912	20912	231	0.037		42	5040	131720	115200	31817	0.229
2	9080	41505	21817	304	0.071		43	5030	152377	120338	37019	0.261
3	9070	62103	23237	427	0.103		44	5020	172673	126525	42109	0.287
4	9060	82702	25159	634	0.134		45	5010	191470	133961	46614	0.304
5	9050	103301	27662	999	0.165		46	4090	30927	123901	1700	0.049
		100001		1 - 0 0		1		1000			- 4 6 9	

Orthotropic Elements for an Idealized Representation of Complex Structures in Ship Global Strength Analysis 12

Orthotropic Elements for Idealization of Global FEM

- Ships' Global FEMs are usually idealized for faster and more efficient calculations.
- The analysis results from idealized models should be consistent with unidealized models' solutions.
- Preparations should be made to streamline the idealization process.

Thank you for your attention!!!